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IT is an energy hog  
The electricity use of data centers is ≈2-3% of the US total, 

and it is growing ≈12% a year!  

co2 x 60 
co2 

Total US use grows ~1% a year! 



Huge push from academia & industry 

 Lots of engineering improvements 



Power Usage Effectiveness (PUE) 

>3   <1.1 

Power to building 

Power to computing 
= 

lower PUE lower energy consumption 
more sustainable 



Power Usage Effectiveness (PUE) 

>3   <1.1 

Power to building 

Power to computing 
= 

The building is efficient,  

it’s time to work on the algorithms… 



This talk: An overview of algorithmic questions & challenges 

1. Two examples 

2. A general model & some results 

3. A case study 

 



Highly non-stationary 

Workload Active Servers 
Idling servers use  

30-50% of peak power 

“Dynamic resizing” Controversial! 

Example 1: Dynamic resizing in a data center 

Goal: Adapt provisioning to minimize cost. 

Challenges: Switching is costly & prediction is hard. 



Example 1: Dynamic resizing in a data center 

Load shifting 

“Valley filling” 

Large, delay tolerate jobs, 

typically with deadlines 

Workload (Batch) 
Deadlines are often 

on the order of hours 

Highly non-stationary 

Workload (Interactive) Active Servers 
Idling servers use  

30-50% of peak power 

“Dynamic resizing” 



Example 1: Dynamic resizing in a data center 

Load shifting 

“Valley filling” 

Active Servers 

“Dynamic resizing” 

PUE 

Solar availability 

Electricity prices 

PUE 



Highly non-stationary workload 

Proxy/Mapping Nodes: 

Data centers: 
Diverse, time varying electricity 

prices, renewable availabilities, 

cooling efficiencies, etc. 

Solar availability 

Electricity prices 

Example 2: Geographical load balancing 



Goal: Adapt routing & provisioning to minimize cost. 

Challenges: Switching is costly & prediction is hard. 

Example 2: Geographical load balancing 



Geographical load balancing 

[Chase et al. 01] [Pinheiro et al. 01] …[Chen et al. 

05] …[Ghandi et al. 09] [Khargharia et al. 10] 

[Kansal et al. 10] …[LWAT10] …  

[Pakbaznia et al. 09] [Qureshi et al. 09] [Rao et al. 10] 

[Stanojevic et al. 10] [Wendell et al 10] [Le et al 2010]  

[LLWLA 11] [LLWAL11] [LAW12], … 

 

Dynamic resizing 

Goal: Adapt routing & provisioning to minimize cost. 

Challenges: Switching is costly & prediction is hard. 



A (familiar) model 



~10min time 0 T 

~1month 

𝑥𝑡  

𝜆𝑡  

time 

workload 

0 T 

# of active servers 



time 

workload 

0 T 

Note: 𝜆𝑡  and 𝑥𝑡can be scalar or vector 

e.g. a homogeneous 

data center 
e.g. geographical 

load balancing 
𝑥𝑡  

𝜆𝑡  
# of active servers 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  (operating cost) + (switching cost) 

(stability constraints) 

Data center goal: 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  (operating cost) + (switching cost) 

𝑥𝑡 ∈ ℕ 

𝑥𝑡 ≥ 𝑆𝐿𝐴(𝜆𝑡) 
… 

𝑁𝑚𝑎𝑥 ≥ 𝑥𝑡 ≥ 0 

stability constraints 

Data center goal: 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  (operating cost) + (switching cost) 

Data center goal: 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

E.g. A homogeneous data center 

 

 
𝑐𝑡 𝑥𝑡; 𝜆𝑡 = min

𝜆𝑖𝑡
  𝑔𝑡(𝜆𝑖

𝑡)
𝑥𝑡

𝑖=1
 

𝑔𝑡 𝑙 ≔ 𝑑(𝑙) + 𝑝𝑡 𝑒 𝑙 − 𝑟𝑡
+ (delay) + (energy cost) 

E.g. Cost to switch server 

on/off 

𝛽 ⋅ |𝑥𝑡 − 𝑥𝑡−1| 

Data center goal: 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

Data center goal: 

convex 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 

Smoothed online convex 

optimization (SOCO) 

Goal:  Algorithms to minimize cost 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

convex 

Stochastic / Adversarial 



𝑐1 

𝑐1(𝑥1) 

𝑥1 

𝐹 



‖𝑥2 − 𝑥1‖ 

𝑐1 

𝑥1 𝑥2 

𝑐2 

𝑐2(𝑥2) 

𝐹 



SOCO comes up in many applications … 
geographical load balancing 

dynamic capacity management  

video streaming  

electricity generation planning  

product/service selection 

portfolio management  

labor markets  

penalized estimation 



Online Learning 

Online Algorithms 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 

Smoothed online convex 

optimization (SOCO) 

Goal:  Algorithms to minimize cost 

2 Communities 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

convex 



Online Learning 

Online Algorithms 

Smoothed online convex 

optimization (SOCO) 

2 Communities 

Regret 

Competitive ratio 
2 Metrics 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 

Goal:  Algorithms to minimize cost 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

convex 



Regret(Alg) = Cost Alg − Cost(Static_Opt) 

Competitive ratio(Alg) = 
Cost Alg

Cost Offline_Opt
 



Competitive ratio(Alg) = 
Cost Alg

Cost Offline_Opt
 

Can an algorithm maintain sub-linear regret? 
[KV02] [BBCM03] [Z03] … [HAK07]… [LRAMW12] 



Can an algorithm maintain a constant competitive 

ratio? [BKRS92] [BLS92]…[BB00]…[LWAT11][LRAMW12] 

Can an algorithm maintain sub-linear regret? 
[KV02] [BBCM03] [Z03] … [HAK07]… [LRAMW12] 

Can an algorithm maintain sub-linear regret and a 

constant competitive ratio?  



Online Learning 

Online Algorithms 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 

2 Communities 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

Regret 

Competitive ratio 
2 Metrics 

Smoothed online convex 

optimization (SOCO) convex 

Goal:  Algorithms with sub-linear regret  



Online Learning 

Online Algorithms 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 

2 Communities 

Online convex optimization 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

Regret 

Competitive ratio 
2 Metrics 

convex 

Goal:  Algorithms with sub-linear regret  



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

 

Online convex optimization 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

Goal:  Algorithms with sub-linear regret  

Many algorithms achieve sub-linear regret  

Online gradient descent (OGD) [Z03] 

𝛻𝑐𝑡 ⋅ 2 < 𝐶 

𝑥𝑡+1 = Proj(𝑥𝑡 − 𝜂𝑡𝛻𝑐
𝑡 𝑥𝑡 ) 



Theorem [Z03] 

When 𝜂𝑡 = Θ(1/ 𝑡), online gradient descent 

has O 𝑇 -regret for OCO. 

Theorem [Z03,H06] 

Any algorithm for OCO must incur Ω 𝑇 -regret 

on linear cost functions. 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

 

Online convex optimization 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

𝛻𝑐𝑡 ⋅ 2 < 𝐶 

Many algorithms achieve sub-linear regret  

- Online gradient descent (OGD) 

  [Z03] 

 - Multiplicative weights  

   [AHK05] [FS99] 

 - Newton’s method based   

   [HKKA06][HAK07] 

Goal:  Algorithms with sub-linear regret  



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

 

Online convex optimization 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

𝛻𝑐𝑡 ⋅ 2 < 𝐶 

Do OCO algorithms maintain sub-linear regret for SOCO? 

Goal:  Algorithms with sub-linear regret  



Smoothed online convex 

optimization (SOCO) 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

𝛻𝑐𝑡 ⋅ 2 < 𝐶 

Do OCO algorithms maintain sub-linear regret for SOCO? 

Goal:  Algorithms with sub-linear regret  



Corollary: 

When 𝜂𝑡 = Θ(1/ 𝑡), online gradient descent 

still has O 𝑇 -regret for SOCO. 

Proof: 

 ‖𝑥𝑡 − 𝑥𝑡−1‖

𝑡

 

≤ 𝑀 𝑥𝑡 − 𝑥𝑡−1 2 (Equivalence of norms) 

≤ 𝑀 𝜂𝑡 𝛻𝑐
𝑡−1(𝑥𝑡−1) 2 (Projection is non-expansive) 

≤ 𝑀𝐶 𝜂𝑡  = 𝑂 𝑇  (Bounded gradient) 



Can an algorithm maintain a constant competitive 

ratio? [BKRS92] [BLS92]…[BB00]…[LWAT11][LRAMW12] 

Can an algorithm maintain sub-linear regret and a 

constant competitive ratio?  

Can an algorithm maintain sub-linear regret? 

 Yes: Online gradient descent has O 𝑇 -regret. 



Online Learning 

Online Algorithms 
2 Communities 

Regret 

Competitive ratio 
2 Metrics 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

Goal:  Algorithms with constant comp. ratio 

online 

Smoothed online convex 

optimization (SOCO) convex 



convex 

Online Learning 

Online Algorithms 
2 Communities 

Regret 

Competitive ratio 
2 Metrics 

𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 
Metrical task system (MTS) 

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3, … 
online 

Goal:  Algorithms with constant comp. ratio 



convex 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

Metrical task system (MTS) 

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3, … 

smoothed 

online 

Is it possible to achieve a constant competitive ratio? 

Goal:  Algorithms with constant comp. ratio 



Theorem [BLS92] [BKRS92]: 

Any deterministic algorithm is Ω(𝑛)-competitive.  

Any randomized algorithm is Ω log𝑛/log log 𝑛  -competitive 

𝑛 is the size of the action set 



convex 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

Metrical task system (MTS) 

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3, … 

smoothed 

online 

Is it possible to achieve a constant competitive ratio? 

Goal:  Algorithms with constant comp. ratio 



convex 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3, … 

smoothed 

online 

Is it possible to achieve a constant competitive ratio? 

scalar 

Goal:  Algorithms with constant comp. ratio 

Smoothed online convex 

optimization (SOCO) 



Is it possible to achieve a constant competitive ratio? 

Theorem: 

“Lazy Capacity Provisioning” (LCP) is 3-competitive. 

Further  𝐶𝑜𝑠𝑡 𝐿𝐶𝑃 ≤
         𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 +  2 𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑂𝑃𝑇)  



time 

Lazy Capacity Provisioning (LCP) 

: last entry in 

Minimize    𝑐𝑠(𝑥𝑠)𝑡
𝑠=1  +    ‖1‖𝑡

𝑠=1 (𝑥𝑠 − 𝑥𝑠−1)+ 

Subject to 𝑥𝑠 ∈ 𝐹 

: last entry in  

Minimize    𝑐𝑠(𝑥𝑠)𝑡
𝑠=1   +    ‖1‖𝑡

𝑠=1 (𝑥𝑠−1 − 𝑥𝑠)+ 

Subject to 𝑥𝑠 ∈ 𝐹 

𝑥𝑡
𝑈  

𝑥𝑡
𝐿  



Theorem: 

“Lazy Capacity Provisioning” (LCP) is 3-competitive. 

Further  𝐶𝑜𝑠𝑡 𝐿𝐶𝑃 ≤
         𝐶𝑜𝑠𝑡 𝑂𝑃𝑇 +  2 𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑜𝑠𝑡(𝑂𝑃𝑇)  

Lemma: 

The offline optimal solution is “lazy in reverse time”. 



time 

Lazy Capacity Provisioning (LCP) 

: last entry in 

Minimize    𝑐𝑠(𝑥𝑠)𝑡
𝑠=1  +    ‖1‖𝑡

𝑠=1 (𝑥𝑠 − 𝑥𝑠−1)+ 

Subject to 𝑥𝑠 ∈ 𝐹 

: last entry in  

Minimize    𝑐𝑠(𝑥𝑠)𝑡
𝑠=1   +    ‖1‖𝑡

𝑠=1 (𝑥𝑠−1 − 𝑥𝑠)+ 

Subject to 𝑥𝑠 ∈ 𝐹 

𝑥𝑡
𝑈  

𝑥𝑡
𝐿  

Optimal 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

𝑐1, 𝑥1, 𝑐2, 𝑥2, 𝑐3, 𝑥3, … 

smoothed 

online 

Is it possible to achieve a constant competitive ratio? 

 

scalar convex 

Goal:  Algorithms with constant comp. ratio 

Smoothed online convex 

optimization (SOCO) 



𝑐𝑡  

𝑥𝑡  

, ct+1, … , 𝑐𝑡+𝑤  

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

predictions 

convex 

Goal:  Algorithms with constant comp. ratio 

Smoothed online convex 

optimization (SOCO) 

Is it possible to achieve a constant competitive ratio? 

 



Is it possible to achieve a constant competitive ratio? 

 

Classic Approach: Receding Horizon Control 



Classic Approach: Receding Horizon Control 

… , 𝑐𝑡−1, 𝑐𝑡 , 𝑐𝑡+1, … , 𝑐𝑡+𝑤−1, 𝑐𝑡+𝑤 , 𝑐𝑡+𝑤+1, …  

𝑥𝑡+1 

𝑥𝑡  

𝑥𝑡−1 



Receding Horizon Control (RHC): 

 Choose 𝑥𝑡  to minimize cost over 𝑡, 𝑡 + 𝑤 , given 

prediction window and 𝑥𝑡−1. 

𝑥𝑡+1 

𝑥𝑡  

𝑥𝑡−1 

… , 𝑐𝑡−1, 𝑐𝑡 , 𝑐𝑡+1, … , 𝑐𝑡+𝑤−1, 𝑐𝑡+𝑤 , 𝑐𝑡+𝑤+1, …  



Receding Horizon Control (RHC): 

 Choose 𝑥𝑡  to minimize cost over 𝑡, 𝑡 + 𝑤 , given 

prediction window and 𝑥𝑡−1. 

Theorem: 

For one-dimensional SOCO, RHC is O(1 + ‖1‖/𝑤)-
competitive .  But, in general, RHC is Ω 1 -competitive. 

Does not improve as 𝑤 grows! 



… , 𝑐𝑡−1, 𝑐𝑡 , 𝑐𝑡+1, … , 𝑐𝑡+𝑤−1, 𝑐𝑡+𝑤 , 𝑐𝑡+𝑤+1,  

RHC 

AFHC 

FHC 
𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑡+𝑤  

𝑥𝑡  is the average 

𝑥𝑡  

𝑥𝑡−1 



Averaging Fixed Horizon Control (AFHC): 

 Choose 𝑥𝑡  as the average of 𝑤 + 1 fixed horizon 

control algorithms. 

AFHC 

𝑥𝑡  is the average 



Theorem: 

AFHC is 𝑂(1 + ‖1‖/𝑤)- competitive 

 

 

Averaging Fixed Horizon Control (AFHC): 

 Choose 𝑥𝑡  as the average of 𝑤 + 1 fixed horizon 

control algorithms. 



Can an algorithm maintain sub-linear regret and a 

constant competitive ratio?  
3 No! 

Can an algorithm maintain sub-linear regret? 

 
1 

Yes: Online gradient descent has Θ 𝑇 -regret. 

Can an algorithm maintain a constant competitive 

ratio?  2 Yes. (in the scalar case): LCP is 3-competitive. 
Yes. (in the vector case): AFHC is 𝑂(‖1‖/𝑤)-comp  



Theorem: 

For arbitrary 𝛾 > 0 and any online algorithm 𝐴, 

there exist linear cost functions such that: 

CR 𝐴 +
𝑅𝑒𝑔𝑟𝑒𝑡 𝐴

𝑇
≥ 𝛾 

Deterministic or randomized 



What now? 
Decide which metric you really care about? 

 - Is 𝜖𝑇-regret “good enough”? 

 - Is log log 𝑇 - competitive “good enough”? 

 - What about under stochastic assumptions? 



Theorem: 

Given a 1-dimensional SOCO, for arbitrary, increasing 𝑓 𝑇 ,  
“Randomly Biased Greedy” (RBG)  is:  

              (1 + 𝑓(𝑇)/‖1‖)-competitive with  
             𝑂(max {𝑇/𝑓(𝑇) , 𝑓(𝑇)})-regret 

Decide which metric you really care about? 

 - Is 𝜖𝑇-regret “good enough”? 

 - Is log log 𝑇 - competitive “good enough”? 

 - What about under stochastic assumptions? 



Randomly Biased Greedy (𝑓(𝑇)) 

1 𝑅𝐵𝐺 = 𝑓(𝑇). 

Theorem: 

Given a 1-dimensional SOCO, for arbitrary, increasing 𝑓 𝑇 ,  
“Randomly Biased Greedy” (RBG)  is:  

              (1 + 𝑓(𝑇)/‖1‖)-competitive with  
             𝑂(max {𝑇/𝑓(𝑇) , 𝑓(𝑇)})-regret 

𝑥𝑡 = argmin 𝑤𝑡(𝑥𝑡) + 𝑥𝑡𝑟  

𝑤𝑡 𝑥 = min
𝑦
{𝑤𝑡−1 𝑦 + 𝑐𝑡 𝑦 + 𝑥 − 𝑦 𝑅𝐵𝐺} 

𝑟 = UnifRand − 1 𝑅𝐵𝐺 , 1 𝑅𝐵𝐺  

Where: 



Can an algorithm maintain sub-linear regret? 

 
1 

Can an algorithm maintain sub-linear regret and a 

constant competitive ratio?  3 

Yes: Online gradient descent has Θ 𝑇 -regret. 

No!                                                                 But (in the 

scalar case): RBG is O(𝑓 𝑇 )-competitive with 

O(max {𝑇/𝑓(𝑇) , 𝑓(𝑇)})−regret. 

Can an algorithm maintain a constant competitive 

ratio?  2 Yes. (in the scalar case): LCP is 3-competitive. 
Yes. (in the vector case): AFHC is 𝑂(‖1‖/𝑤)-comp  



Back to the applications… 



An implementation: Dynamic resizing 

Load shifting 

“Valley filling” 

Active Servers 

“Dynamic resizing” 

PUE 

Solar availability 

Electricity prices 

PUE 



WSJ ARTICLE SCREEN SCHOT 

An implementation: Dynamic resizing 

HP collaborators: Yuan Chen, Cullen Bash, Martin Arlitt, Daniel Gmach, Zhikui Wang, Manish Marwah and Chris Hyser 
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Scaled by population density 

Proxy/Mapping Nodes: 

A case study: Geographical load balancing 
Data centers: 
Google data center locations 

Real traces for wind, solar, 

electricity price, etc. 

Solar availability 

Wind availability 



A case study: Geographical load balancing 
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The good 
Follow the renewables routing emerges. 
Huge reductions in grid usage become possible. 

The bad 

The ugly 
GLB uses dirtier grid electricity too! 

GLB uses more energy if data centers don’t 

have renewables available. 



The ugly 
GLB uses dirtier grid electricity too! 

Demand response can help! 



Final thoughts 



Geographical load balancing Dynamic resizing 

min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

Smoothed online  

convex optimization 
convex 

Implementation 



min
𝑥𝑡∈𝐹
 𝑐𝑡 𝑥𝑡

𝑡

+ ‖𝑥𝑡 − 𝑥𝑡−1‖  

smoothed 

online 𝑥1, 𝑐1, 𝑥2, 𝑐2, 𝑥3, 𝑐3, … 

Smoothed online  

convex optimization 
convex 

Lots of interesting theoretical questions remain:  
Stochastic models for cost functions better algorithms? 

Predictions are extremely important in practice  Stochastic variations? 

The full cost function is not observed in practice  Bandit versions? 

Can an algorithm balance regret and the competitive ratio? 
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