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wnaesull [T is an energy hog

A Look st the Energy Choices

hat Power Cloud Computing

The electricity use of data centers is =2-3% of the US total,
and it is growing ~12% a year! Total US use grows ~1% a year!
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Huge push from academia & industry

N~

Lots of engineering improvements




Power to building
Power to computing

Power Usage Effectiveness (PUE) =
e A

>3 —<1.1
———

lower PUE % lower energy consumption
= more sustainable



Power to building
Power to computing

Power Usage Effectiveness (PUE) =
f_H
>3 —<1.1

}

The building is efficient,
it's time to work on the algorithms...



This talk: An overview of algorithmic questions & challenges

1. Two examples
2. A general model & some results
3. A case study



Example 1: Dynamic resizing in a data center
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|dling servers use

| 30-50% of peak powera

Goal: Adapt provisioning to minimize cost.
Challenges: Switching is costly & prediction is hard.

Active Servers

 Controversial!
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Active Servers

Dynamic resizing”




Dynamic resizing in a data center
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Data centers:
Diverse, time varying electricity

prices, renewable availabilities,
cooling efficiencies, etc.

Example 2: Geographicalload balancing
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Example 2: Geographical load balancing
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Goal: Adapt routing & provisioning to minimize cost.
Challenges: Switching is costly & prediction is hard.



Dynamic resizing _I‘Gepgraph‘ical load bala
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Goal: Adapt routing & provisioning to minimize cost.
Challenges: Switching is costly & prediction is hard.



A (familiar) model



# of active servers

workload

~10min T time

........... ~IMONTR eererreesemsmssesesssssssesssesssssssesssssasnas



Note: A% and xtcan be scalar or vector

- AN

f e.g. a homogeneous e.g. geographical A

* % data center load balancing

*

4,
workload

T time



Data center goal:
min E(Operating cost) + (switching cost)

xteF
r t

(stability constraints)



Data center goal:
min E(Operating cost) + (switching cost)

xteF
r t
stability constraints
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Npax = X = 0
x; = SLA(A,)



Data center goal:
min E(Operating cost) + (switching cost)

xteF
t



Data center goal:
rrginz ct(xt) + ||xt — x|

x'eF
t

E.g. Cost to switch server
on/off

B lxt —xt71
E.g. A homogeneous data center

ct(xt; AY) _mIHE g L)

g (1) := (delay) + (energy cost)



Data center goal:
minz: ct(xt) + ||xt — x|

xteF

=)

convex



Stochastic / Adversarial
xt et x? c?, x3, c3, €< online

min Z c’(x®) + |lx" = x"* { Smoothed online convex
N c'(Snvex smoothed optimization (SOCO)

Goal: Algorithms to minimize cost









S0C0 comes up in many applications ...

geographical load balancing
dynamic capacity management
video streaming

electricity generation planning
product/service selection
portfolio management

labor markets

penalized estimation



xt et x? c?, x3, c3, €< online
,rg}g;z C,g(xt) +[lx* = x| { Smoothed online convex
AN

convex smoothed optimization (SOCO)

Goal: Algorithms to minimize cost

. Online Learning
2 Communities { }
Online Algorithms



xt et x? c?, x3, c3, €< online
,r;gg;Z C,g(xt) +[lx* = x| { Smoothed online convex
AN

convex smoothed optimization (SOCO)

Goal: Algorithms to minimize cost

. Online Learning
2 Communities { }
Online Algorithms

2Metrics{ egret V- }
Competitive ratio



Regret(Alg) = Cost(Alg) — Cost(Static_Opt)

Cost(Alg)
t(Offline_Opt)

Competitive ratio(Alg) = Cos



(an an algorithm maintain sub-linear regret?
[KVoz] [BBCMo3] [Z03] ... [HAKO7]... [LRAMW12]

Cost(Alg)

Competitive ratio(Alg) = Cost(Offline_Opt)



(an an algorithm maintain sub-linear regret?
[KVoz] [BBCMo3] [Z03] ... [HAKO7]... [LRAMW12]

(an an algorithm maintain a constant competitive
ratio? [BKRS92] [BLS92]...[BB0O]...[LWAT11] [LRAMW12]

(an an algorithm maintain sub-linear regret and a
constant competitive ratio?



xt et x? c?, x3, c3, €< online

min Z c’(x") +|lx" = x"*| { Smoothed online convex

=

convex smoothed optimization (SOCO)

Goal: Algorithms with sub-linear regret f

. Online Learning
2 Communities { }
T Online Algorithms

2Metrics{ Reget }
Competitive ratio



xt et x? c?, x3, c3, €< online

minz ct(x?) + M

xtEFK A “——— ¢ Online convex optimization

convex smoothed

Goal: Algorithms with sub-linear regret

. Online Learning
2 Communities { }
T Online Algorithms

2Metrics{ Regret }
Competitive ratio



3 -3

xl,cl x? c?,x3,c3, ...

min z ct(xY) :
xter £ Online convex optimization
IVct()Il, < C

Goal: Algorithms with sub-linear regret

Online gradient descent (0GD) [Z03]

t+1 — . t [ t
Many algorithms achieve sub-linear regret< ~ Proj(x” —nVc™(x"))



Theorem | 70
Whenn, = ©(1/+/t), online gradient descent
has O (/T )-regret for 0C0.

Theorem {Z03.H06

Any algorithm for 0C0 must incur Q(v/T')-regret
on linear cost functions.



3 -3

xl,cl x? c?,x3,c3, ...

min z ct(xh)
xteF

; Online convex optimization
[VctEOll < C

Goal: Algorithms with sub-linear regret

- Online gradient descent (0GD)
[Z03]
- Multiplicative weights

[AHK05] [FS99]
- Newton's method based

[HKKA06] [HAKO7]

Many algorithms achieve sub-linear regret



xl,cl x? c?,x3,c3, ...

min z ct(xh)
xteF

; Online convex optimization
[VctEOll < C

Goal: Algorithms with sub-linear regret

Do 0CO algorithms maintain sub-linear regret for S0C0?



xl,cl x? c?,x3,c3, ...

,f}tlg;z ct (") + llx* =x*7*|I | Smoothed online convex
|||7ct(f)||2 <C smoothed optimization (SOCO)

Goal: Algorithms with sub-linear regret

Do 0CO algorithms maintain sub-linear regret for S0C0?



Corollary:
Whenn, = ©(1/+/t), online gradient descent

still has O (/T )-regret for SOCO.

Z —xt1]

o< MZIIx — x|, (Equivalence of norms)
<M z ne||Vet = (xt=1)||, (Projection is non-expansive)

< MC z Mt =0(VT)  (Bounded gradient)



(an an algorithm maintain sub-linear regret?
Yes: Online gradient descent has O (/T )-regret.

(an an algorithm maintain a constant competitive
ratio? [BKRS92] [BLS92]...[BB0O]...[LWAT11] [LRAMW12]

(an an algorithm maintain sub-linear regret and a
constant competitive ratio?



xt et x?, c?, x3, c3, €< online
;Izglz C,g(xt) +[lx* = x| { Smoothed online convex
AN

convex smoothed optimization (SOCO)

Goal: Algorithms with constant comp. ratio

. Online Learning
2 Communities { }
Online Algorithms

2Metrics{ R“'g"’t( T }

ompetitive ratio



cl x1 c% x? c3,x3

i il g1 line

min ) cf(x%) + |Jxt — x|
xteF é /‘ ~—orn— Metrical task SYStEITI (MTS)
Tl smoothed

Goal: Algorithms with constant comp. ratio

. Online Learning
2 Communities { }
Online Algorithms

2Metrics{ Regret T }

Competitive ratio



ct xt c? x? c3, x3<—online
minz ct(xt) + ||xt — x|

xtEFK ‘—— > Metrical task system (MTS)
Tl smoothed

Goal: Algorithms with constant comp. ratio

Is it possible to achieve a constant competitive ratio?



n is the size of the action set

Theorem [BLS92] [BKRS92]: S

Any deterministic algorithm is Q2 (n)-competitive.
Any randomized algorithmis Q(/log n/loglog n )-competitive




ct xt c? x? c3, x3<—online
rrgg;z ct(x) + [lxt — x| ,
IR —— > Metrical task system (MTS)
ol smoothed

Goal: Algorithms with constant comp. ratio

Is it possible to achieve a constant competitive ratio?



ct xt, c?, x?, ¢, x3€— online

min z ct(x) + lIx* =x*H | Smoothed online convex

Ne/

convex  scalar  smoothed optimization (SOCO)

Goal: Algorithms with constant comp. ratio

Is it possible to achieve a constant competitive ratio?



Theorem:
“Lazy Capacity Provisioning” (LCP) is 3-competitive.

Further cost(LCcP) <
Cost(OPT) + 2 SwitchingCost(OPT)

Is it possible to achieve a constant competitive ratio?



Minimize Z@ c’(x®) + Z@ NS = x5t
f ? Subjecttox, € F
Iast entrym

Lazy Capacity Provisioning (LCP)
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Theorem:
“Lazy Capacity Provisioning” (LCP) is 3-competitive.

Further cost(LCP) <
Cost(OPT) + 2 SwitchingCost(OPT)

Lemma:
The offline optimal solution is “lazy in reverse time”.




Minimize Y'5_, cS(x%) + XL |11 (x5t —x5)*F
Subjecttoxg € F

Ias entry in

Lazy Capacity Provisioning (LCP)

Optimal

- xL: last entry in 1
. >
time

Minimize 35— ¢¥(x%) + Y=g 11| (x® — x5~ D)7
Subjecttox, € F



ct xt, c?, x?, ¢, x3€— online

min z ct(x) + lIx* =x*H | Smoothed online convex
" f smoothed optimization (SOCO)

convex

Goal: Algorithms with constant comp. ratio

Is it possible to achieve a constant competitive ratio?



T~ predictions

min > ¢*(x*) + |Ix* — x| | Smoothed online convex

'}(:néx smoothed optimization (SOCO)

Goal: Algorithms with constant comp. ratio

Is it possible to achieve a constant competitive ratio?



(lassic Approach: Receding Horizon Control

Is it possible to achieve a constant competitive ratio?



(lassic Approach: Receding Horizon Control
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Receding Horizon Control (RHC):

Choose x; to minimize cost over [, t + w], given
prediction window and x;_ .

t+w—-1 Ct+w t+w+1
)

,C



Receding Horizon Control (RHC):

Choose x; to minimize cost over [, t + w], given
prediction window and x;_ .

Theorem:
For one-dimensional S0C0, RHCis O (1 + ||1]|/w)-
competitive. But, in general, RHCis (|| 1||)-competitive.

L

Does not improve as w grows!
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x! is the average



Averaging Fixed Horizon Control (AFHC):

Choose x; as the average of w + 1 fixed horizon
control algorithms.

AFHC — '

x! is the average



Averaging Fixed Horizon Control (AFHC):

Choose x; as the average of w + 1 fixed horizon
control algorithms.

Theorem:
AFHCis O (1 + [|1]| /w)- competitive



1 (an an algorithm maintain sub-linear regret?
Yes: Online gradient descent has © (/T )-regret.

(an an algorithm maintain a constant competitive

2 | ratio? Yes. (in the scalar case): LCP is 3-competitive.
Yes. (in the vector case): AFHCis O (|| 1|| /w)-comp

3 (an an algorithm maintain sub-linear regret and a
constant competitive ratio? N_O'



Deterministic or randomized
Theorem: S,

For arbitrary y > 0 and any online algorithm A4,

there exist linear cost functions such that:

Regret(A
CR(4) + gT()zy




Decide which metric you really care about?
? -Is €T -regret “good enough™?
What now: -Islog log T - competitive “good enough™?
- What about under stochastic assumptions?



Decide which metric you really care about?

-Is €T -regret “good enough™?

-Islog log T - competitive “good enough™?
- What about under stochastic assumptions?

Theorem:;
Given a 1-dimensional SOCO, for arbitrary, increasing f (T),
“Randomly Biased Greedy” (RBG) is:

(1 + £(T)/||1||)-competitive with

O(maxiT/f(T),f(T)})-regret




Randomly Biased Greedy (£ (7))

xt = argmin wt(x?) + xtr

Where: ll1llrsc = f(T).

wt(x) = myin{Wt_l()’) +ct@) + llx = yllrse}
r = UnifRand(—||1|gpe, [ 1llr5¢)

Theorem:;
Given a 1-dimghsional SOCO, for arbitrary, increasing f (T),
“Randomly Biased Greedy” (RBG) is:

(1 + £(T)/||1||)-competitive with

O(maxiT/f(T), f(T)})-regret



1 (an an algorithm maintain sub-linear regret?
Yes: Online gradient descent has © (/T )-regret.

(an an algorithm maintain a constant competitive

2 | ratio? Yes. (in the scalar case): LCP is 3-competitive.
Yes. (in the vector case): AFHCis O (|| 1| /w)-comp

Can an algorithm maintain sub-linear regret and a
3 | constant competitive ratio? No! But (in the

scalar case): RBG is O(f (T"))-competitive with
O(max{T/f(T), f(T)})-regret.



Back to the applications...



(ﬁﬂAn implementation: Dynamic resizing
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%23 An implementation: Dynamic resizing
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HP Unveils Architecture for First Net Zero Energy Data Center

PALO ALTO, CA — (MARKETWIRE) - 05/30/12 —

HP (NYSE: HPQ) today unveiled research from HP Labs, the company’s central research arm, that illustrates the architecture for a data center that requires no net
energy from traditional power grids

The research shows how the architecture, combined with holistic energy-management techniques, enables organizations to cut total power usage by 30 percent, as
well as dependence on grid power and costs by more than 80 percent (1)

With the HP Net-Zero Energy Data Center research, HP aims to provide businesses and societies around the world the potential to operate data centers using local
renewable resources, removing dependencies such as location, energy supply and costs. This opens up the possibility of introducing IT services to organizations of
all sizes

“Information technology has the power to be an equalizer across societies globally, but the cost of IT services, and by extension the cost of energy, is prohibitive and

inhibits widespread adoption,” said Cullen Bash, distinguished technologist, HP, and interim director, Sustainable Ecosystems Research Group, HP Labs. "The HP

Net-Zero Energy Data Center not only aims to minimize the environmental impact of computing, but aiso has a goal of reducing energy costs associated with data-
__center op,e,r,at,»ons,lg’mena the reach of IT accessibilitv aloballv "

HP collaborators: Yuan Chen, Cullen Bash, Martin Arlitt, Daniel Gmach, ZhiRui Wang, Manish Marwah and Chris Hyser



K723 An implementation: Dynamic resizing
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HP collaborators: Yuan Chen, Cullen Bash, Martin Arlitt, Daniel Gmach, Zhikui Wang, Manish Marwah and Chris Hyser



A case study Geographlcal Ioad balancmg "t centers.
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A case study Geographlcal load balancin
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GLB: geographical load balancing & dynamic resizing

VS.

LOCAL: Route to the closest data center & dynamic resizing



The good /1'

Follow the renewables routing emerges.

east coast

# Servers ON

west coast

Day 1 Day 2



The good /1'

ollow the renewables routing emerges.
Huge reductions in grid usage become possible.

(apacity needed to reduce grid usage by 85%

LOCAL

Wind capacity

GLB

N

L I | I
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Solar capacity




The good /)'

Follow the renewables routing emerges.
Huge reductions in grid usage become possible.

The bad A

GLB uses more energy if data centers don't
nave renewables available.

GLB

Energy consumption

LOCAL

Day1 Day 2




The good A

Follow the renewables routing emerges.
Huge reductions in grid usage become possible.

The bad A

GLB uses more energy if data centers don't
have renewables available.

The ugly /1'

GLB uses dirtier grid electricity too!



Demand response can help!

The ugly /1' }

GLB uses dirtier grid electricity too!



Final thoughts



Dynamic resizing G
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Lots of interesting theoretical questions remain:
Stochastic models for cost functions—> better algorithms?

Predictions are extremely important in practice = Stochastic variations?
The full cost function is not observed in practice = Bandit versions?
Can an algorithm balance regret and the competitive ratio?

r\/‘

xt, et x2,c2, 3, 3 € online

Smoothed online
2.

t(xt)+||x x| L
'\ convex optimization

convex smoothed

min
xteF
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