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Overview 
What tools are available to study dynamic systems 

of many interacting agents? 
Benchmark theory in economics: dynamic games. 
But dynamic games can be hard to work with… 
 
This talk is an example of the use of 

mean field approximations to simplify 
analysis of dynamic games. 
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Multiarmed bandit games 
In this talk, we focus on multiarmed bandit games. 
These are games where each agent faces a 

multiarmed bandit problem, but with rewards 
affected by other agents’ actions. 

 
We discuss a mean field approach to obtaining 

insight into equilibria of such games. 
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Outline 
• Review: multiarmed bandits 
• Multiarmed bandit games 
• A mean field model 
• Results: 

• Existence, uniqueness, convergence, approximation 

• Related work 



Review: Multiarmed bandits 
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Multiarmed bandits 
Multiarmed bandits (MABs) are a canonical model 

for studying learning in uncertain environments. 

Basic (stationary, stochastic) model: 
At each time t, a single agent chooses one 

among n alternatives (“arms”). 
Alternative i returns a Bernoulli(θi) reward 

(i.i.d. across time and arms), where θ is unknown. 

The objective is generally to learn the best arm 
“quickly”. 
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Examples 
Wireless channel selection: 

Devices can choose one of n channels for 
transmission; channel quality is uncertain. 

Product selection: 
 A firm can choose one of n products to sell or 
recommend in each period. 

Online service selection: 
 An individual experiments with different online 
services each period (e.g., online gaming). 



9 

Optimal policies: examples 
(1) Discounted expected reward criterion: 

 Assume agent discounts future rewards 
 by β < 1. 

 Also assume the agent has a prior over θ. 
 Goal is to maximize E[∑t ¸ 0 βt Rewardt | prior ]. 
 For this model, the Gittins index policy is optimal. 
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Optimal policies: examples 
(2) Expected regret criterion: 

 Let θi* = maxj θj. 
 Goal is to minimize: 
  E[Regrett] = tθi* - ∑s · t

E[Rewards] 
 It is well known that optimal policies achieve 

 E[Regrett] = O(log t) (e.g., Lai-Robbins, UCB). 
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State: aggregating history 
Important observation: 

Under the i.i.d. stationary reward model, 
a sufficient statistic of the past history is:   

 zt = (wt(1), `t(1), …, wt(n), `t(n)) 

Where  wt(i) = # of successes on arm i up to time t, 
and   `t(i) = # of failures on arm i up to time t. 



Multiarmed bandit games 
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Multiple agents: MAB games 
Now suppose m agents each play a multiarmed 

bandit, but their rewards are coupled. 
Formally: 

 Let ft(i) = fraction of agents that pull arm i. 
 Agent k’s reward on 
pulling arm i is 
Bernoulli( Q(θi

k, ft(i) ), 
independent across arms 
and time. 

We call θk 2 [0,1]n the type of agent k . 
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Multiple agents: MAB games 
This defines a multiarmed bandit (MAB) game: 

 Each individual has plays a multiarmed bandit, 
but with rewards affected by others. 

All prior examples are really MAB games: 
 Wireless channel selection 
 Product selection 
 Online service selection 

 



15 

Examples of reward functions 
Congestion models: 

 Q(θ, f) decreasing in f 

 e.g., wireless channel selection, product selection 
 
Coordination models: 

 Q(θ, f) increasing in f 

 e.g., selection on online gaming service 
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Equilibrium: PBE 
How should an agent play? 
Observe that rewards are no longer stationary. 
Dynamic game theory suggests that the right solution 

concept is perfect Bayesian equilibrium: 
 (1) An agent maintains beliefs over all that is 
unknown (including other agents’ beliefs); and 

 (2) Chooses an optimal strategy (for their 
objective), given strategies chosen by other players. 
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Equilibria in dynamic games 
PBE is implausible: 

 PBE makes very strong rationality assumptions, 
i.e., that agents track and forecast their competitors. 

 
PBE is intractable:  

Even finding an optimal strategy is intractable due to 
state space complexity---let alone an equilibrium. 
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An alternate approach 
In “practice”, such complex strategies are never 

implemented. 
 
We consider an alternate question: 
What happens if agents pretend the world is 

stationary, and play “simpler” strategies? 
 
We use mean field approximations to 

provide insight into this question. 
 



A mean field model 
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Mean field approach 
We study the MAB game in a mean field model. 
• An agent is characterized by state zt and type θt. 
• Agents “regenerate” after geometric(1-β) time. 

• Upon regeneration, θ sampled i.i.d. from a dist. W. 
• Upon regeneration, state reset to zero vector. 

• Policy σ maps state zt to (randomized) arm choice. 
• Let ft denote population profile at time t. 
 
Note: all agents use the same policy σ. 



21 

Agent dynamics 

State zt 

Regeneration 
(Probability 1-β) 

State zt+1 reset to zero 
θt+1 drawn independently from W 

No regeneration 
(Probability β) 

Arm i ~ σ(zt) 
chosen 

Bernoulli( Q(θi,t, ft) ) 
reward obtained 

zt updated 
to zt+1 (in i’th 
coordinate) 
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Agent dynamics 

State zt 

Regeneration 
(Probability 1-β) 

State zt+1 reset to zero 
θt+1 drawn independently from W 

No regeneration 
(Probability β) 

Arm i ~ σ(zt) 
chosen 

Bernoulli( Q(θi,t, ft) ) 
reward obtained 

zt updated 
to zt+1 (in i’th 
coordinate) 

Let P(zt+1, θt+1| zt , θt, ft) 
denote this kernel. 
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Mean field dynamics 
The mean field model for a policy σ is characterized 

by a sequence of joint distributions µt, t ¸ 0, over 
states z and types θ. 

 
µt(z, A) denotes the measure of agents at state z and 

with type 2 A at time t. 
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Mean field dynamics 
(1) Given µt, 

the population profile ft is: 
ft(i) = ∑z sθ σ(z)(i) µt (z, dθ) 

 i.e., compose the measure µt with the policy σ. 
 
(2) Given µt and ft, 
µt+1 is obtained from agent dynamics: 
µt+1(z, A) = ∑z’ sθ P(z, A | z’, θ, ft) µt(z’, dθ) 
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Mean field equilibrium 
The preceding discussion motivates the notion of 

mean field equilibrium: 
 
Given a policy σ, a measure µ is a MFE if it is a 

fixed point of the mean field dynamics 
(with associated MFE population profile f). 
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Discussion of MFE 
(1) Note that in an MFE, the population profile is 

fixed, and remains stationary over time. 
  
 So if the world is in an MFE, 
each agent solves a stationary stochastic MAB! 
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Discussion of MFE 
(2) Note that no notion of optimality is part of the 

definition, because we fixed the policy a priori. 
 

 This allows us to determine whether “simple” 
policies yield meaningful behavior in MAB games 

 (UCB, index policies, etc.). 
 

 But we might also introduce optimality into the 
definition itself. 
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Discussion of MFE 
(3) Note that MFE is distinct from the literature on 

asymptotic learning in games. 
 

 In particular, in our model agents live for finite 
time and are always learning in steady state. 

 
 The learning in games literature focuses 
asymptotic behavior of agents, and whether they 
converge to a solution of the static game. 



Results 
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Existence 
Proposition: 
 
If Q is continuous in f, an MFE exists. 
 
Proof: Brouwer’s fixed point theorem. 
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A contraction condition 
Theorem: 
 
Suppose Q is Lipschitz in f, with Lipschitz constant L. 
Then if: 

β(1 + L) < 1, 
the map µt ! µt+1 is a contraction (in TV distance). 
 
(Note that this is true for any policy σ!) 
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Uniqueness and convergence 
Corollary: 
 
If β(1 + L) < 1, then there exists a unique MFE, 

and mean field dynamics converge to it from any 
initial condition.  
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Contraction: proof technique 
•  The proof relies on coupling characterization 

of total variation distance. 
• Suppose µ, µ’ have TV distance d. 
• Observe that resulting population profiles f, f’ 

have TV distance at most d. 
• Construct (z,θ) ~ µ, (z’,θ’) ~µ’, such that: 

  P( (z,θ) ≠ (z’,θ’) ) = d 
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Contraction: proof technique 
• Couple transitions and use Lipschitz condition 
• Can show that TV distance at next time step is less 

than or equal to β(d + (1-d)d L) · β(1+L) d 

• Why? 
 Can couple so states/types at next time step 
differ only if: 

 -no regeneration; and 
 -initial states/types differed, or 
 -initial states/types the same, and 
subsequent states differ 
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Contraction: discussion 
Note that the condition is strong: 
It requires either that 

(1) agents do not live too long; or 
 (2) agents are not too sensitive to each other. 

 
But this happens because the result applies 

for any policy. 
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Mean field limit 
Theorem: 
 
Let µt

(m) be the sequence of (random) joint state-type 
distributions in a system with m players, all using 
policy σ. 

Under the same contraction condition (β (1+L) < 1 ), 
 µt

(m) converges weakly to µt uniformly in t (in L1). 
 
Intuition: the contraction condition prevents the 

system from “drifting”.  (See also Glynn ’04.) 
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Numerics 
The contraction condition appears to be very loose, 

based on numerical experiments. 
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Numerics: large β	


• Q(θ, f) = θf, two arms, E[θ1] = 0.8, E[θ2] = 0.33 
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Numerics: large L 
• Q(θ, f) = θ/(1+Lf), two arms, β = 0.9, 

E[θ1] = 0.8, E[θ2] = 0.33 
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Decreasing rewards 
As partial evidence of the conservatism of our result, 

we have recently established that: 
 (1) if σ is positively sensitive to rewards 
(informally, arms with higher rewards are more 
likely to be pulled); and 
(2) if Q(θ, f) is decreasing in f, 

then the MFE is unique.   
 
We conjecture that the dynamics converge as well.  



Conclusion 
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Summary 
We are trying to study what happens when 

individuals learn as if the world is stationary, 
while in fact interactions with others create 
nonstationarity. 

 
Our work shows that (under some conditions),  

the system eventually becomes stationary. 
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Mean field equilibria in games 
More generally, our work illustrates the value of 

mean field equilibria in games: 
Asymptotics vastly simplify the study of dynamic 

interactions among agents. 
As a result, we can gain insight into previously 

intractable settings. 
This makes mean field approximations to games 

invaluable tools for engineering of economic 
systems. 
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Coda: Related work 
Mean field models arise in a variety of fields: 

 physics, applied math, engineering, economics… 
Mean field models in dynamic games: 
•  Economics: Jovanovic and Rosenthal (1988); Stokey, Lucas, Prescott 

(1989); Hopenhayn (1992); Sleet (2002); Weintraub, Benkard, Van Roy 
(2008, 2010); Acemoglu and Jepsen (2010); Bodoh-Creed (2011) 

•  Dynamic markets: Wolinsky (1988); McAfee (1993); Backus and Lewis 
(2010); Iyer, Johari, Sundararajan (2011); Gummadi, Proutiere, Key 
(2012); Bodoh-Creed (2012); Duffie, Malamud, Manso (2009, 2010)  

•  Control: Glynn, Holliday, Goldsmith (2004); Lasry and Lions (2007); 
Huang, Caines, Malhame (2007-2012); Gueant (2009); Tembine, 
Altman, El Azouzi, le Boudec (2009); Yin, Mehta, Meyn, Shanbhag 
(2009); Adlakha, Johari, Weintraub (2009, 2011) 

 
(Other names for MFE: Stationary equilibrium, oblivious equilibrium) 


