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Privacy – efficiency trade-offs 

q Google & FaceBook track online browsing behaviour 

q Apple & Android phones track geographical location 

q Official reason for harvesting user data: better service results 

q  Amazon’s “You might also like” 

q  Netflix’s cinematch engine 

q Privacy ≠ Anonymity: Netflix sued for disclosing anonymized 
“Prize” dataset 

à What trade-offs between recommendation accuracy and user 
privacy when service providers are untrusted? 



Roadmap 

q Recommendation as Learning 

q  “Local” Differential Privacy 

q Query Complexity Bounds 

q Mutual Information and Fano’s Inequality 

q  Information-Rich Regime: Optimal Complexity via Spectral Clustering 

q  Information-Scarce Regime: Complexity Gap and Optimality of “MaxSense” 



Recommendation   

q  Users watch and rate items (movies) 
q  Engine predicts unobserved ratings & recommends 
items with highest predicted ratings 

?



A Simple Generative Model: The “Stochastic Block Model” 
[Holland et al. 83] 

q  Each user belongs to one 
of K user classes 

q  Each movie belongs to 
one of L movie classes 

q  The rating of a user for a 
movie depends only on the 
user & movie classes 



A Simple Generative Model: The “Stochastic Block Model” 

P(+)=b1,1 

P(+)=b1,2 

P(+)=b2,2 

P(+)=b2,1 



Minimal requirement for recommendation: 
 
 learn movie clusters  

à Can tell what “Users who liked this have also liked” 

à Can reveal clusters and let users decide on their own their 
affinity to distinct clusters 

Challenge: how to do so while respecting users’ privacy? Without 
them trusting you? 



Roadmap 

q Recommendation as Learning 

q  “Local” Differential Privacy 

q Query Complexity Bounds 

q Mutual Information and Fano’s Inequality 

q  Information-Rich Regime: Optimal Complexity via Spectral Clustering 

q  Information-Scarce Regime: Complexity Gap and Optimality of “MaxSense” 



Formal definition: Differential Privacy [Dwork 06] 

q  Input (private) data: X 

àx, x’: any two possible values differing in just one user’s input 

q Output (public) data Y 

ày: any possible value 

Definition 

 

Key property: attacker holding any side information S trying  to 
know whether user u has any property A. Then public data does 
not help: 
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Differential Privacy: Centralized versus Local 
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Centralized model  
 
§ Trusted DataBase aggregates 
Users’ private data 
§ DP applied at egress of DB 
àlearning is not affected by DP 
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Local model  
 
§ No trusted DataBase  
§ DP applied locally at user end 
àlearning is affected by DP 
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Example mechanisms: Laplacian noise and bit flipping 
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Aka “Randomized response technique” [Warner 1965]: 

Used to conduct polls about embarrassing questions 

“Do you understand the impact of euro-bonds on Europe’s future?” 

 

 

Answer truthfully only if score >2 

àSpecific answers are deniable 

àEmpirical sums are still valid for learning few parameters 

 Inadequate for learning many parameters: with k distinct ε-private 
sketch releases, overall privacy guarantee becomes k ε 

 

Local DP- historical perspective 



Roadmap 

q Recommendation as Learning 

q  “Local” Differential Privacy 

q Query Complexity Bounds 

q Mutual Information and Fano’s Inequality 

q  Information-Rich Regime: Optimal Complexity via Spectral Clustering 

q  Information-Scarce Regime: Complexity Gap and Optimality of “MaxSense” 



Learning, Mutual Information and DP 

Want to learn hypothesis H from M distinct possibilities  

(e.g. clustering of N movies into L clusters: M ≈ LN options),  

Having observed G (e.g., DP inputs of U distinct users) 

 

Fano’s inequality: Learning will fail with high probability, 

 unless mutual information I(H;G) close to log(M) 

 

 

Mutual information:  
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Result: DP-sketch X’ based on private data X verifies 

for any side information S: 

 

 

 

 

 

 

à Mutual information I(H;G): at most U*ε 

à  “Query complexity”: need at least N/ε users’ private inputs to 
recover hidden clusters 

 

            G 

Learning, Mutual Information and DP 
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Out of N items in total, users rate W movies  

(assumed picked uniformly at random) 

à  Information-rich regime: W=Ω(N) 

à  Information-scarce regime: W=o(N) 

 

Users’ “information wealth” will affect optimal query complexity 

The Information-Rich and the Information-Scarce Regimes 
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The information-rich regime: Pairwise-preference algorithm 

 

 

 

 

 

Construct item affinity matrix A: 

 

 

Spectral clustering of items  

based on A 
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X’u=bit-flip(Xu) 

X’1 

xU 

xu 

x1 

X’U 

“did you rate as + both items iu, ju?”  



The information-rich regime: Pairwise-preference algorithm 

Result:  Algorithm finds hidden clusters w.h.p. if U=Ω(N log N) 

under “block distinguishability” conditions on underlying model 

àoptimal, up to logarithmic factor 

 

Proof elements: matrix A: adjacency of ER-like graph, with 

 

 

When prefactor is Ω(log N/N) , top eigenvectors determine 
underlying block structure 

[Feige-Ofek 2005; Tomozei-M 2011] 
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The information-scarce regime: lower bounds 

 

 

 

 

 

Channel mismatch will make end-to-end mutual information much 
lower than minimum of each mutual information 

 

Intuition: to question “did you rate item i with a +?”, user’s answer 
will be informative only with chance W/N 

à  Information in public sketch is “diluted” by factor W/N 

 

 

 

User’s private ratings 

X’1 H 

Block structure: 
Movie clusters 

Public sketch 

Channel 1: 
 

User sampling & rating 

Channel 2: 
 

Local DP mechanism 



The information-scarce regime: lower bounds 

 

Result: Assume two item clusters, and each user u observes true 
type Zi of W randomly picked items i 

Then: a user’s DP sketch X’ verifies I(H;X’)=O(W/N) 

 

Corollary: to learn hidden clustering of N items from parallel queries 
to U users needs U=Ω(N2/W) 

e.g.  N=104 , W=100 needs U= Ω(106) 

   N=106 , W=100 needs U= Ω(1010) 

   à need to query non-humans! 

 



Proof elements 

1) Bound on mutual information 

 

 

à A convex quadratic form of the kernels p(I,Z | S) 

2) Identification of extremal kernels 

 

3) Some Euclidean geometry… 

 

 



Information-scarce regime: Max-Sense algorithm 

 

 

 

 

 

 

User query: Sense random set S(u) of size N/W 

Item representative: 

 

 

X’u=bit-flip(Xu) 

X’1 

xU 

xu 

x1 

X’U 

“did you rate as + any item i in set S(u)?”  
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Information-scarce regime: Max-Sense algorithm 

Result: under separability assumption, k-means clustering of item 
representatives find hidden clusters w.h.p. if U=Ω(N2log(N)/W) 

àOptimal scaling, up to logarithmic factor 

 



Conclusions and Outlook 

q  Mutual Information adequate to characterize learning complexity under 
local DP constraints 

q  Accurate Clustering, Local Differential Privacy, Low (linear) Query 
Complexity: leave one out! 

q  MaxSense achieves optimal complexity for parallel queries 

q  Can one beat its complexity with adaptive queries? 

 

q  Alternatives to Differential Privacy? 



Questions? 



Lower bounds for adaptive queries 

Can one improve complexity by adapting queries based on previous 
user answers? 

 

Result: for W=1, arbitrary side information S 

Then user’s DP sketch X’u verifies 

 

àAdaptive query complexity at least Ω(N log(N)) 

Larger than initial lower bound by logarithmic factor 

 

CONJECTURE: Query complexity lower bound of N2/W still holds 
with adaptive queries 
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