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Privacy — efficiency trade-offs

1 Google & FaceBook track online browsing behaviour

O Apple & Android phones track geographical location

4 Official reason for harvesting user data: better service results

0 Amazon’s “You might also like”

O Netflix’s cinematch engine

O Privacy = Anonymity: Netflix sued for disclosing anonymized
“Prize” dataset

- What trade-offs between recommendation accuracy and user
privacy when service providers are untrusted?
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Roadmap

1 Recommendation as Learning

4 “Local” Differential Privacy

O Query Complexity Bounds

O Mutual Information and Fano’s Inequality
O Information-Rich Regime: Optimal Complexity via Spectral Clustering

Q Information-Scarce Regime: Complexity Gap and Optimality of “MaxSense”
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Recommendation

1 Users watch and rate items (movies)
1 Engine predicts unobserved ratings & recommends

items with highest predicted ratings
®
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A Simple Generative Model: The “Stochastic Block Model”
[Holland et al. 83]

O Each user belongs to one
of K user classes

U Each movie belongs to
one of L movie classes

O The rating of a user for a
movie depends only on the
user & movie classes

<> <>

technicolor




A Simple Generative Model: The “Stochastic Block Model”
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Minimal requirement for recommendation:

learn movie clusters

- Can tell what “Users who liked this have also liked”

- Can reveal clusters and let users decide on their own their
affinity to distinct clusters

Challenge: how to do so while respecting users’ privacy? Without
them trusting you?
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4 “Local” Differential Privacy
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Formal definition: Differential Privacy [Dwork 06]

O Input (private) data: X
—2>X, X': any two possible values differing in just one user’s input

O Output (public) data Y

—>Vy: any possible value

Definition |p(y =y | X =x)=e'PY =y| X =x")

Key property: attacker holding any side information S trying to
know whether user u has any property A. Then public data does
not help:

. P(useruhasA|SandY) .
e’ = <e
P(user u has A | S)
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Circle of trust
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Differential Privacy: Centralized versus Local

Centralized model Local model

»Trusted DataBase aggregates *No trusted DataBase

Users’ private data *DP applied locally at user end
*DP applied at egress of DB —>learning is affected by DP

—>learning is not affected by DP technicolor




Example mechanisms: Laplacian noise and bit flipping
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Local DP- historical perspective

Aka “Randomized response technique” [Warner 19695]:
Used to conduct polls about embarrassing questions

“Do you understand the impact of euro-bonds on Europe’s future?”
I

¥
'

Answer truthfully only if score >2
- Specific answers are deniable
—>Empirical sums are still valid for learning few parameters

Inadequate for learning many parameters: with k distinct e-private
sketch releases, overall privacy guarantee becomes k ¢
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O Query Complexity Bounds

O Mutual Information and Fano’s Inequality
O Information-Rich Regime: Optimal Complexity via Spectral Clustering

Q Information-Scarce Regime: Complexity Gap and Optimality of “MaxSense”
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Learning, Mutual Information and DP

Want to learn hypothesis H from M distinct possibilities
(e.g. clustering of N movies into L clusters: M = LN options),

Having observed G (e.g., DP inputs of U distinct users)

Fano’s inequality: Learning will fail with high probability,

unless mutual information |(H;G) close to log(M)

Mutual information: |/(H;G)= ;P(H =h,G = g)log(
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Learning, Mutual Information and DP

Result: DP-sketch X' based on private data X verifies

for any side information S: I(X;X'|S)=<¢

Priv,

- Mutual information |(H;G): at most U*e

- “Query complexity”: need at least N/e users’ private inputs to

recover hidden clusters .
technicolor
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The Information-Rich and the Information-Scarce Regimes

Out of N items in total, users rate W movies
(assumed picked uniformly at random)

—> Information-rich regime: W=Q(N)

-> Information-scarce regime: \W=0o(N)

AN 1

Users’ “information wealth” will affect optimal query complexity
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The information-rich regime: Pairwise-preference algorithm

T e e T === ===

PEXD |77 Xy

Construct item affinity matrix A

U
4; = Mm(LEIX 'u1<iuju)=(ij>) ;
Spectral clustering of items &
based on A
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The information-rich regime: Pairwise-preference algorithm

Result: Algorithm finds hidden clusters w.h.p. if U=Q(N log N)

under “block distinguishability” conditions on underlying model

—>optimal, up to logarithmic factor

Proof elements: matrix A: adjacency of ER-like graph, with

E(4,)=2 N(](\{_ ) Zg\i:ll)) > [(1= 26 e ) + £ ]

When prefactor is Q(log N/N) , top eigenvectors determine
underlying block structure

[Feige-Ofek 2005; Tomozei-M 2011]
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The information-scarce regime: lower bounds

Channel 1: Channel 2:
@User sampling & rating Local DP mechanism @
Block structure: . | Public sketch
Movie clusters User’s private ratings

Channel mismatch will make end-to-end mutual information much
lower than minimum of each mutual information

Intuition: to question “did you rate item i with a +?”, user’s answer
will be informative only with chance W/N

-> Information in public sketch is “diluted” by factor W/N
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The information-scarce regime: lower bounds

Result: Assume two item clusters, and each user u observes true
type Z, of W randomly picked items i

Then: a user’'s DP sketch X' verifies |(H; X" )=O(W/N)

Corollary: to learn hidden clustering of N items from parallel queries
to U users needs U=Q(N?/W)

e.g. N=10%, W=100 needs U= Q(10°)
N=106 , W=100 needs U= ©(1070)

-> need to query non-humans!
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Proof elements

1) Bound on mutual information

1(Z: 5) < Es [Eq, 20522015 |22 2,220 — 1]

- A convex quadratic form of the kernels p(l,Z | S)
2) ldentification of extremal kernels

3) Some Euclidean geometry...
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Information-scarce regime: Max-Sense algorithm

- &=

X’1 ———————————————————

“did you rate as + any item i in set S(u)?”I

F

User query: Sense random set S(u) of size N/W

ltem representative:

U
T(l) = E X'u IZES(M)
u=1
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Information-scarce regime: Max-Sense algorithm

Result: under separability assumption, k-means clustering of item
representatives find hidden clusters w.h.p. if U=Q(N?log(N)/W)

- Optimal scaling, up to logarithmic factor

i I'000 users-

2000 users

5000 users ,

10000 users

20000 users

50000 users
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Conclusions and Outlook

O Mutual Information adequate to characterize learning complexity under
local DP constraints

1 Accurate Clustering, Local Differential Privacy, Low (linear) Query
Complexity: leave one out!

0 MaxSense achieves optimal complexity for parallel queries

O Can one beat its complexity with adaptive queries?

O Alternatives to Differential Privacy?
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Questions?
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Lower bounds for adaptive queries

Can one improve complexity by adapting queries based on previous
user answers?

Result: for W=1, arbitrary side information S

Then user’s DP sketch X', verifies |I(X',;H|S)=< O(%)MaX(U(H;S))

—>Adaptive query complexity at least (N log(N))

Larger than initial lower bound by logarithmic factor

CONJECTURE: Query complexity lower bound of N?/\W still holds

with adaptive queries
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