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1.  Graphical Models and Belief Propagation 
2.  A Simple Example: Matching 
3.  The Steiner Tree Problem 
4.  Application to Networks in Systems Biology 
 



}  (Hyper)Graphical model:  Representation of 
dependency structure of a collection of random 
variables with local constraints 

𝐺=(𝑉,  𝐸) 
}  Each node  𝑖∈V  has random variable 𝜎↓𝑖  with a 

priori distribution 𝜑↓𝑖  
}  Each hyperedge 𝑐∈𝐸  has (hard or soft) constraint 
𝜓↓𝑐  

}  Probability distribution of the set of variables 𝜎↓𝑉 
= { 𝜎↓𝑖 }↓𝑖∈V : 

                                  𝜇(𝜎↓𝑉 )=   1/𝑍   ∏𝑖∈V↑▒𝜑↓𝑖 ( 𝜎↓𝑖 )  ∏𝑐∈E↑▒𝜓↓𝑐 ( 
𝜎↓𝑐 ) 



}  Visualize dependency structure: Factor Graph F                                                       

𝑖  𝑐  

}  Interested in calculating/estimating: 
◦  Marginals 𝜇↓𝑖  of 𝜎↓𝑖  

𝜇↓𝑖 ( 𝜎↓𝑖 )=  ∑𝜎↓𝑗 ∈𝜎↓𝑉\i ↑▒𝜇(𝜎↓𝑉 )  
◦  Modes (configurations of maximal weight) 

𝜎↓𝑚𝑎𝑥 =  argmax 𝜇 

𝑖𝑐  is an edge of F  
if  

𝑖  is constrained by 𝑐 



}  Iterative method for approximating marginals 
and modes, exact if the factor graph is a tree 

}  In general, 2 sets of equations* relating: 
◦  “message from i to c”:  
𝜇↓𝑖→𝑐  = marginal i would have if it ignored constraint 
c  
◦  “message from c to i”: 
𝜇↓𝑐→𝑖  = marginal i would have if it were only 
constrained through c (and had uniform prior) 

*Note:  There are simplifications in problems in 
which the variables or constraints have only 
degree 2 in the factor graph 



}  Fixed-Point Equations (exact on trees): 

𝜇↓𝑖→𝑐 (𝜎↓𝑖 )∝   𝜑↓𝑖 ( 𝜎↓𝑖 )∏𝑐↑′ ∋𝑖, 𝑐↑′ ≠𝑐↑▒𝜇↓𝑐′→𝑖  (𝜎↓𝑖 ) 
𝜇↓𝑐→𝑖 (𝜎↓𝑖 )  ∝∑𝜎↓𝑘 ∈𝜎↓𝑐\i     ↑▒𝜓↓𝑐 (𝜎↓𝑘 )∏𝑗∈𝑐,  𝑗≠𝑖↑▒
𝜇↓𝑗→𝑐   (𝜎↓𝑗 ) 

}  Easy to implement corresponding update equations 
}  Often work well in practice 
}  Question:  When does the solution converge to the right 

answer? 



}  Maximum weight matching 
◦  Bipartite graph (when solution is unique):   
�  Bayati, Shah, Sharma (‘08) 
◦  General graph, b-matching (when corresponding 

LP is tight):   
�  Bayati, Borgs, Chayes, Zecchina (‘09) 
�  Sanghavi, Shah, Willsky (‘09) 

}  Nash bargaining on networks (when 
corresponding MWM LP is tight):   
◦  Bayati, Borgs, Chayes, Kanoria, Montanari (‘11) 

}  Min-cost network flow:   
◦  Garmanik, Shah, Wei (‘11) 

 



}  The model and graphical representation 
}  Derivation of BP for (max) weighted matchings 
}  LP and statement of BP results 



}  Given 
◦  Graph 𝐺=(𝑉,  𝐸) 
◦  Degree sequence { 𝑏↓𝑖 }↓𝑖∈𝑉  , 𝑏↓𝑖 =1,  2,  … ,|V| 
◦  Weights { 𝑤↓𝑖𝑗 }↓𝑖𝑗∈𝐸  

}  Perfect b-matching 𝑀  
𝑀⊆𝐸    s.t. ∀  𝑖∈𝑉   |{𝑒∈𝑀  |  𝑒∋𝑖}|= 𝑏↓𝑖  

  Ex:  𝑏≡1  perfect matching 
   𝑏≡2   2-factor 

}  Max-weight b-matching problem:  Find 
 𝑀↓𝑚𝑎𝑥  s.t.    𝑊( 𝑀↓𝑚𝑎𝑥 )= ∑𝑖𝑗∈ 𝑀↓𝑚𝑎𝑥 ↑▒𝑤↓𝑖𝑗   is 

maximal 
 
 



}  Here the variables sit on the edges and the 
constraints on the sites of the graph 𝐺=(𝑉,𝐸) 
◦  Variables:  ∀  𝑖𝑗  ∈𝐸,       𝑥↓𝑖𝑗 =  {█■0  if          vacant1  if  occupied   
◦  Constraints:  ∀  𝑖∈𝑉,        ∑𝑗∈𝑁(𝑖)↑▒𝑥↓𝑖𝑗 = 𝑏↓𝑖      
M ↔ edge variables 𝑥↓𝐸 ={ 𝑥↓𝑖𝑗 }  with 𝑥↓𝑖𝑗 =  {█■1  if  𝑖𝑗  ∈𝑀 0  if  
𝑖𝑗  ∉𝑀    

}  Probability distribution of 𝑥↓𝐸  at “temperature” 
𝛽: 

𝜇(𝑥↓𝐸 )=   1/𝑍   ∏𝑖𝑗∈E↑▒𝑒↑𝛽𝑤↓𝑖𝑗 𝑥↓𝑖𝑗     
∏𝑖∈V↑▒𝕀(∑𝑗∈𝑁(𝑖)↑▒𝑥↓𝑖𝑗 = 𝑏↓𝑖  )    



}  Simplifications:  
◦  Consider only 𝑏≡1  (perfect matchings) 
◦  Notational:  leave out constraint in equations, and enforce 

constraints implicitly 

𝜇(𝑥↓𝐸 )=   1/𝑍   ∏𝑖𝑗∈E↑▒𝑒↑𝛽𝑤↓𝑖𝑗 𝑥↓𝑖𝑗    
}  Messages:   
◦  Since variables have only degree 2 in the factor graph, we 

need only one set of equations, e.g. for 𝜇↓{𝑖,𝑗}→𝑗  = 
marginal at 𝑖𝑗 if constraint at 𝑗   is ignored, which we’ll just 
call 𝜇↓𝑖→𝑗  = 𝜇↓𝑖→𝑗 (𝑥↓𝑖𝑗 ). 
◦  Also, instead of taking just 𝜇↓𝑖→𝑗 (1) or 𝜇↓𝑖→𝑗 (0), as the 

message, try the log-ratio 𝑚↓𝑖→𝑗  defined by  

𝑒↑𝛽𝑚↓𝑖→𝑗  =   𝜇↓𝑖→𝑗 (1)/𝜇↓𝑖→𝑗 (0)  



}  𝜇↓𝑖→𝑗 (0) 
=   1/𝑍↓𝑖𝑗  ∑𝑘∈𝑁(𝑖)\j↑▒𝜇↓𝑘→𝑖 (1) ∏ℓ𝓁∈𝑁(𝑖)
\{𝑗,𝑘}↑▒𝜇↓ℓ𝓁→𝑗 (0)  

𝑖  
𝑗 

ℓ𝓁 

𝑖  
𝑗 

𝑘 ℓ𝓁 

}  𝜇↓𝑖→𝑗 (1) 
=   𝑒↑𝛽𝑤↓𝑖𝑗  /𝑍↓𝑖𝑗  ∏ℓ𝓁∈𝑁(𝑖)\𝑗↑▒𝜇↓ℓ𝓁→𝑗 (0)  

   ⇒𝑒↑−𝛽𝑚↓𝑖→𝑗  =   𝜇↓𝑖→𝑗 (0)/𝜇↓𝑖→𝑗 (1)  = ∑𝑘∈𝑁(𝑖)\j↑▒𝑒↑−𝛽( 𝑤↓𝑖𝑗   −   
𝑚↓𝑘→𝑖 )    

As 𝛽  →∞ 𝑚↓𝑖→𝑗 =     𝑤↓𝑖𝑗 − max┬𝑘∈𝑁(𝑖)\j  𝑚↓𝑘→𝑖   



}  Similarly, on trees, one can show: 
𝜇(𝑖𝑗∈𝑀)          =             𝑒↑𝛽𝑚↓𝑖→𝑗  /∑𝑘↑▒𝑒↑𝛽𝑚↓𝑘→𝑗      

  →  𝛽→∞┬   {█■0      if  𝑚↓𝑖→𝑗 <     max┬𝑘∈𝑁(𝑗)  
𝑚↓𝑘→𝑗  1    if  𝑚↓𝑖→𝑗 =     max┬𝑘∈𝑁(𝑗)  𝑚↓𝑘→𝑗     

 (assuming the max above is not degenerate). 

⟹  For each 𝑖∈𝑉, algorithm chooses edge 𝑘𝑖 into 𝑖 with 
maximum message 𝑚↓𝑘→𝑖    



}  Define “message” 𝑚↓𝑖→𝑗  on directed edge 𝑖→𝑗  by 
 𝑚↓𝑖→𝑗 (0)=   𝑤↓𝑖𝑗  
 𝑚↓𝑖→𝑗 (𝑡+1)=   𝑤↓𝑖𝑗 − max┬𝑘∈𝑁(𝑖)\j  𝑚↓𝑘→𝑖 (𝑡)  

}  To estimate 𝑀↓𝑚𝑎𝑥  at time t, 𝑀(𝑡): 
For each site 𝑖  choose as the candidate edge into    𝑖 the 
edge 𝑖ℓ𝓁 such that 
𝑚↓ℓ𝓁→𝑖 (𝑡)=   max┬𝑘∈𝑁(𝑖)  𝑚↓𝑘→𝑖 (𝑡)  
and add this maximum message edge to the candidate 
“matching” 𝑀(𝑡).  (Note 𝑀(𝑡)  may not be a b-matching.) 
}  Note:  This is exact on trees. 
}  Question:   Can we determine when else it converges 

to the correct answer, and how fast? 

𝑖 
𝑗 

𝑘 



}  Consider the corresponding LP relaxation and its dual: 
◦  LP:    max ∑𝑖𝑗∈𝐸↑▒𝑤↓𝑖𝑗 𝑥↓𝑖𝑗   
    subj. to   0  ≤𝑥↓𝑖𝑗  ≤1 

   ∑𝑗∈𝑁(𝑖)↑▒𝑥↓𝑖𝑗 = 𝑏↓𝑖   
◦  Dual:   min ∑𝑖𝑗∈𝐸↑▒𝜆↓𝑖𝑗 −∑𝑖∈𝑉↑▒𝑏↓𝑖 𝑦↓𝑖    
    subj. to   𝜆↓𝑖𝑗 ≥0 

   𝜆↓𝑖𝑗 ≥   𝑤↓𝑖𝑗 + 𝑦↓𝑖 + 𝑦↓𝑗    

}  Theorem (Bayati, Borgs, Chayes, Zecchina ’09):  If the LP has a unique 
optimum which is integer, then 𝑀(𝑡) converges to the 
correct solution   𝑀↓𝑚𝑎𝑥 .  In particular 𝑀(𝑡)= 𝑀↓𝑚𝑎𝑥  for  

    𝑡  ≥ 2|𝑉|/𝜖  max┬𝑖  | 𝑦↓𝑖↑ ↓↑∗ |   , 
   where 𝑦↑∗ is an optimal solution of the dual LP and                          
𝜖= min┬𝑖𝑗  {| 𝑤↓𝑖𝑗 +   𝑦↓𝑖↑ ↓↑∗ + 𝑦↓𝑗↑ ↓↑∗ |  >0}. 



}  Given 
◦  Graph 𝐺=(𝑉,  𝐸) 
◦  Costs { 𝑐↓𝑖𝑗 }↓𝑖𝑗∈𝐸 , 𝑐↓𝑖𝑗   ≥0 
◦  Set of “terminals” 𝑆⊆𝑉 

}  Problem:  Find a tree 𝑇 ⊆𝐺  containing all terminals, i.e. 
all nodes in 𝑆, which minimizes the cost: 

𝐶(𝑇)=  ∑𝑖𝑗  ∈𝐸(𝑇)↑▒𝑐↓𝑖𝑗   

}  Difficulty:  Want to do BP on this, but don’t have a local 
way to enforce the global constraint of a (connected) 
tree 

}  Solution:  Introduce a new representation 



}  Designate one terminal 𝑟∈𝑆 as root and set 𝑐↓𝑟𝑟 =0 
}  ∀𝑖∈𝑉, introduce two variables 
◦  Distance:  𝑑↓𝑖 ∈{0,  1,…,  |𝑉|−1} 
◦  Parent:  𝑝↓𝑖 ∈𝑁(𝑖)∪{∗} 

}  If 𝑇  is a Steiner tree, set 
◦  𝑑↓𝑖 = dist↓𝑇 (𝑖,𝑟)  ∀𝑖∈𝑉(𝑇) 
◦  𝑝↓𝑖 =  {█■∗    if                                                    𝑖≠𝑉(𝑇) 𝑖    if                                                                    𝑖=𝑟parent  of  𝑖  
in  𝑇        otherwise   

}  Cost of the tree:  𝐶(𝑇)=  ∑𝑖∈𝑉(𝐺)↑▒𝑐↓𝑖𝑝↓𝑖   𝕝(𝑝↓𝑖 ≠  ∗) 
}  Constraints: 
◦  𝑝↓𝑖 ≠  ∗   ∀𝑖∈𝑆 
◦  If 𝑝↓𝑘 =𝑗∉{∗,𝑟} , then 𝑝↓𝑗 ≠  ∗ and 𝑑↓𝑗 = 𝑑↓𝑘 −1 

𝑑=0 

𝑑=1 

𝑑=2 
𝑟 

Bayati, Borgs, Braunstein, 
Chayes, Ramezanpour, 
Zecchina  (‘08) 

𝑑=  ∞ 
∗ 



}  Define interactions enforcing these constraints (and 
including the weights): 

𝜓↓𝑗𝑘 = [1−𝕝(𝑝↓𝑘 =𝑗)𝕝(𝑑↓𝑗 ≠ 𝑑↓𝑘 −1)][1−𝕝(𝑝↓𝑘 =𝑗)𝕝(𝑝↓𝑗 =  
∗)] 

and 
𝜑↓𝑖 =[1−𝕝(𝑖∈𝑆)𝕝(𝑝↓𝑖 =  ∗)]  exp[−𝛽𝑐↓𝑖𝑝↓𝑖  𝕝(𝑝↓𝑖 ≠  ∗)] 
}  Then the probability distribution is 
𝜇({𝑑↓𝑖 ,   𝑝↓𝑖 })=   1/𝑧 ∏𝑖∈𝑉↑▒𝜑↓𝑖 ∏𝑖,𝑗∈𝑉;    𝑖𝑗∈𝐸↑▒𝜓↓𝑖𝑗    
}  Variants: 
◦  Bounded diameter D tree:  Take 𝑑↓𝑖 ∈{0,1,  …,  𝐷} 
◦  Prize-collecting Steiner tree:  Replace 𝜑↓𝑖  by soft constraints, 

removing 𝕝(𝑖∈𝑆) and adding “prizes” to cost function 

See Angel, Flaxman, 
Wilson (’08 -’12) 



}  Rigorous Results:  Minimum spanning tree 
◦  If BP converges, then it converges to the correct solution (Bayati, 

Braunstein and Zecchina ’08) 

}  Non-Rigorous Results:  Minimum Steiner tree 
◦  Tests of our BP algorithm vs. LP algorithms for a benchmark 

library of several dozen Steiner tree instances (SteinLib), show 
that our algorithm is much faster.  Also, it gets better optima in 
all but two (very small) instances (Bailley-Bechet, Borgs, 
Braunstein, Chayes, Dagkessamanskaia, Francois, Zecchina ‘11) 
◦  On biological data sets in the Fraenkel Lab at MIT, the LP 

algorithms were too slow to give any results on human data 

}  Open Problem:  Find sufficient conditions for BP for the 
MWST to converge to the correct solution, or at least to a 
solution within 𝜖 of an optimizer.  of an optimizer. 



}  The Biological Problem 
}  Formulation of the Algorithmic Problem:  The 

Prize-Collecting Steiner Tree (PCST)  
}  Biological Applications of the PCST 
}  A Variant Algorithmic Problem:  The Prize-

Collecting Steiner Forest 



}  Standard Dogma:  DNA à RNA à Proteins 

⇒ Gene Regulatory Network 

Protein 
Interactome 



}  Problems with the gene regulatory network 
are the sources of many diseases 

}  How do we infer the network structure from 
partial data? 

}  Can we identify particular nodes on the 
network responsible for dysregulation in 
certain diseases and individuals? 

}  Are one or more nodes in combination viable 
drug targets? 



Mass	  spectrometry	  
Protein	  Modifica2ons	  

P	   A	  U	  

Yeast	  two-‐hybrid	  
Affinity	  capture	  mass-‐spec	  
Protein-‐protein	  interac2ons	  

ChIP-‐Seq,	  Dnase-‐Seq,	  …	  
Protein-‐DNA	  interac2ons	  

Gene2c/Chemical	  	  
Screens	  

Microarrays	  
RNA-‐Seq	  
mRNA	  

AAATAGCCATTATACGTA
CCTAATACTGAAGAGTCA
TTCCTAGTAAAGCATGCT
ACTTTTCAGTATATTCCA
TTATATTTTTAACTACAA
GCGGCGCAGAAACCAGAG 

Computa2onal	  
Models	  

Points	  of	  	  
Interven2on	  



DNA chips 
gene-regulatory 

network 

}  Microarrays tell us which gene is expressed in the 
presence of which other gene under a particular set of 
conditions  

}  From the differential expression of a particular gene, 
we infer the node weight of the corresponding 
transcription factor protein (prize in the PCST) 

}  To get edge weights between two proteins, we use the 
probability of interaction of these two proteins inferred 
from (properly weighted) databases of known 
interactions for the given organism 

Question:  How do we determine the network 
most likely to have produced this data?  



}  Given 
◦  Graph 𝐺=(𝑉,  𝐸) 
◦  Costs { 𝑐↓𝑖𝑗 }↓𝑖𝑗∈𝐸 , 𝑐↓𝑖𝑗   ≥0 
◦  Set of “prize terminals” 𝑆⊆𝑉 with prizes {𝜋↓𝑖 }↓𝑖∈𝑆 , 𝜋↓𝑖 
>0  
◦  Parameter 𝜆>0 

}  Problem:  Find a tree 𝑇 ⊆𝐺 which minimizes the cost: 
𝐶(𝑇)=  ∑𝑖𝑗∈𝐸(𝑇)↑▒𝑐↓𝑖𝑗    −𝜆∑𝑖∈𝑉(𝑇)↑▒𝜋↓𝑖   

}  Note:  As 𝜆  →∞, this turns into the standard Steiner 
tree problem with terminals 𝑆= 𝑖𝜋↓𝑖 >0 . 



}  Find the tree which minimizes 
𝐶(𝑇)=  ∑𝑖𝑗∈𝐸(𝑇)↑▒𝑐↓𝑖𝑗    −𝜆∑𝑖∈𝑉(𝑇)↑▒𝜋↓𝑖   

𝜋↓𝑖 =− log 𝑝↓value (𝑖)  
where 𝑝↓value (𝑖) is the p-value 
of the differential expression of 
the gene corresponding to 
protein 𝑖, in the given , in the given 
experiment 

𝑐↓𝑖𝑗  =− log prob(𝑖𝑗  exists)    
where prob(𝑖𝑗  exists)is the 
probability that proteins 𝑖  and 𝑗    
interact in the given organism 
(from databases) 



}  In the standard Steiner tree problem, nodes which are 
included in the minimizing solution but which are not 
terminals, i.e. not in the set 𝑆,  are called Steiner nodes   

}  Similarly, in the PCST, nodes which have zero (or low) 
prizes but which are included in the minimizing solution 
are called Steiner nodes 

}  In the context of the gene regulatory networks, Steiner 
nodes correspond to proteins whose genes which are not 
differentially expressed a lot, but which nevertheless seem 
likely to participate in the network ⇒ identification of 
proteins not previously know to participate in the pathway 



}  Yeast protein signal transduction network: 
◦  4689 Proteins 
◦  14928 Protein-Protein interactions 
◦  Gives set of weights { 𝑐↓𝑖𝑗 } for relevant proteins in 

pheromone response pathway 
}  Considered 56 large-scale gene expression 

data sets used to reconstruct the yeast 
pheromone pathway.  For each data set 
◦  Get set of prizes {𝜋↓𝑖 } 

}  Construct 56 solutions to bounded-D PCST 
problem 

}  “Merge solutions” to get one network 

(Bailley-Bechet, Borgs, Braunstein, 
Chayes, Dagkessamanskaia, Francois, 
Zecchina:  PNAS ‘11) 



}  Two types of proteins on 
network 
◦  Proteins differentially expressed in 

pheromone response and previously 
discovered by transcriptomic studies 
(terminals) 
◦  Proteins not differentially expressed 

but bridging between different 
subnetworks (“Steiner proteins”) 

Question:  Are the Steiner 
proteins important in the 
pheromone response pathway? 



}  Did an experiment to knock out the gene 
corresponding to COS8 

⟹ 
Pheromone response pathway failed. 
 
“Experimental  
proof” of the 
importance of 

the Steiner node 



}  Problems (mammals relative to yeast): 
◦  Incomplete interactome data 
◦  Ten times as many transcription factors 
◦  Huge intergenic regions 

}  Need fast algorithms 



}  Glioblastoma:  
◦  particular form of brain cancer 
◦  the human cancer with the worst outcome 
◦  much more common in men than women 

Presentation Post-op Recurrence 
Pope W B et al. Radiology 2008;249:268-277 Weil RJ (2006) PLoS Med 3(1): e31.  



(Fraenkel Lab, MIT, work in 
progress using our PCST algorithm)  

Mass spectrometry 

Interactome 

Expression/Epigenomics 

? 



}  EGFR variant III mutation is 
most common EGFR 
mutation in human cancer 

}  Present in 60% of GBMs 
}  EGFRvIII expression 

correlates with shorter life 
expectancies 

Try EGFR 

Always good to choose receptor proteins 
since these often begin signaling pathways 
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}  Top 5 Nodes ranked by betweeness centrality*:  
SRC, ESR1, HDAC1, CREBBP, GRB2 

}  SRC well-known to be active in many types of 
cancer, and had relatively large “prize” 

}  What about ESR1?   
◦  No “prize” and not previously identified for Glioblastoma 
◦  What is ESR1?  
◦  This is the Estrogen Receptor   

}  First pathway link between glioblastoma and 
gender!  

}  Experimental test:  EGFR inhibitor and Estrodiol 
together inhibit the growth of GBM cells in culture 
better than the EGFR inhibitor alone   

 ⇒ possible drug therapy for glioblastoma  
*Relative percentage of 
shortest paths in graph 
through given node 



}  How do we explain multiple disjoint signaling 
pathways altered in a particular condition? 

}  Use Prize-Collecting Steiner Forest:   
}  Just like prize-collecting Steiner tree, but now we 

also specify that there be 𝑘  disjoint trees* (= forest 
𝐹) as the minimizing solution of  

𝐶(𝐹)=  ∑𝑖𝑗∈𝐸(𝐹)↑▒𝑐↓𝑖𝑗    −𝜆∑𝑖∈𝑉(𝐹)↑▒𝜋↓𝑖   
}  To implement PCSF, just add an “artificial node” 𝐴, 

connect every node 𝑖  to 𝐴 with strength 𝑐↓𝑖𝐴  ⇒  new 
PCST with 1 more node and |𝑉|  more edges 

(Tuncbag, Braunstein, Pagnani, Huang, Chayes, Borgs, Zecchina, Frankel; RECOMB  ’12) 

*Or let 𝑘  vary by adding another term to 𝐶 



Prize Collecting Steiner Forest 
Method 

Reveals parallel 
working pathways, 
in addition to 
“hidden” (Steiner) 
individual proteins 
or genes 



Prize Collecting Steiner Forest 
Method 

Reveals parallel 
working pathways, 
in addition to 
“hidden” individual 
proteins or genes 







}  Graphical models give us succinct representations for 
capturing local dependencies among random variables, 
and (with the right representation) even some global 
dependencies, e.g., the prize-collecting Steiner tree 

}  Belief propagation give us a way of approximiating 
marginals and modes of graphical models 
◦  Rigorously can be proved to converge quickly to the correct 

solution in particular cases (e.g., b-matching when LP has 
only integral optima) 
◦  In practice converges to near optimal solutions very rapidly 

on known benchmarks and new biological data sets 
}  There is biological evidence that BP algorithms do very 

well in identifying signaling and regulatory pathways 
among proteins, and also identify “Steiner proteins”, 
suggesting drug targets for human disease 



}  Find conditions under which these new BP 
algorithms (for the Steiner tree, the prize-
collecting Steiner tree or forest, or even the 
minimum spanning tree) converge to either 
the correct solution or at least to a solution 
within 𝜖 of an optimizer. 

}  Get bounds on the rate of convergence. 




